TNL: FDM on GPU in C++

Tomáš Sobotík Ondřej Székely Libor Bakajsa Martin Schäfer Jakub Kaňuk Jan Vacata Department of Mathematics,

Vítězslav Žabka Vladimír Klement

Radek Fučík Jakub Klinkovský

WSC 2016

Czech Technical University in Prague

TNL = Template Numerical Library

Aim of the project is to develop a numerical library which is:

- efficient
 - C++, CUDA for GPUs
- Ilexible
 - C++ templates
- user friendly
 - we hide C++ templates as much as possible

GPUs and MICs

- performance of CPUs does not grow as fast as it used to
- $\bullet\,$ memory modules are \approx 200 $\times\,$ slower than CPU
- new accelerators appeared
 - GPU graphical processing unit (Nvidia Tesla)
 - MIC many integrated cores (Intel Xeon Phi)

- they are massively parallel up to thousands of computing cores
- ullet they have pprox 20 imes faster memory modules

GPUs (and MICs)

- have own memory
- are connected to CPU by slow PCI Express
- require data stored in large contiguous blocks
- have many cores supporting vectorization

Therefore,

- the programmer must have good knowledge of the hardware
- porting a code to GPUs means rewriting the code from scratch
- lack of support in older numerical libraries

It is good reason for development of numerical library which makes GPUs (and MICs) easily accessible.

- data structures
- e solvers
- OPDE solver
- operformance results

Arrays

- arrays are basic structures for memory management
- tnlArray< ElementType, DeviceType, IndexType >
 - DeviceType CPU (tnlHost) or GPU (tnlCuda)
 - memory accesses to CPU and GPU are checked at compile time
- there are methods for
 - memory allocation setSize, setLike
 - I/O operations load, save
 - operators − =, ==, «
 - elements manipulation
 - getElement, setElement callable only from host for both tnlHost/tnlCuda
 - __cuda_callable__ operator[] callable from host for tnlHost and from CUDA kernels for tnlCuda

tnlVector< RealType, DeviceType, IndexType >

- vectors extend arrays with algebraic operations (BLAS)
 - operators +=, -=, *=, /=
 - scalar product scalarProduct
 - parallel reduction operations lpNorm, min, max, ...

Matrix formats

TNL supports the following matrix formats (on both CPU and GPU):

- dense matrix format
- tridiagonal and multidiagonal matrix format
- Ellpack format
- CSR format
- SlicedEllpack format
 - Oberhuber T., Suzuki A., Vacata J., *New Row-grouped CSR format for storing the sparse matrices on GPU with implementation in CUDA*, Acta Technica, 2011, vol. 56, no. 4, pp. 447-466.
- ChunkedEllpack format
 - Heller M., Oberhuber T., *Improved Row-grouped CSR Format* for Storing of Sparse Matrices on GPU, Proceedings of Algoritmy 2012, 2012, Handlovičová A., Minarechová Z. and Ševčovič D. (ed.), pages 282-290.

Grids

TNL supports 1D, 2D and 3D structured grids: tnlGrid< Dimensions, Real, Device, Index >

- it provides indexing and coordinates mapping for the mesh entities:
- each grid/mesh consists of mesh entities referred by their dimensions
- in 2D
 - cell 2 dimensions
 - face 1 dimension
 - vertex 0 dimensions
- in 3D
 - cells 3 dimensions
 - faces 2 dimensions
 - edges 1 dimensions
 - vertices 0 dimensions

Grids

2D grid with 3×3 cells

auto neighbourEntities = entity.template getNeighbourEntities $\langle 2 \rangle$ (); Index& center = entity.getIndex(); // 4 Index& east = neighbourEntities.template getEntityIndex $\langle 1, 0 \rangle$ (); // 5 Index& west = neighbourEntities.template getEntityIndex $\langle -1, 0 \rangle$ (); // 3 Index& north = neighbourEntities.template getEntityIndex $\langle 0, 1 \rangle$ (); // 7 Index& south = neighbourEntities.template getEntityIndex $\langle 0, 1 \rangle$ (); // 7

Solvers

- ODEs solvers
 - Euler, Runge-Kutta-Merson CPU and GPU
 - Oberhuber T., Suzuki A., Žabka V., The CUDA implementation of the method of lines for the curvature dependent flows, Kybernetika, 2011, vol. 47, num. 2, pp. 251–272.
- solvers of linear systems
 - Krylov subspace methods (CG, BiCGSTab, GMRES, TFQMR)
 CPU and GPU
 - Oberhuber T., Suzuki A., Vacata J., Žabka V., Image segmentation using CUDA implementations of the Runge-Kutta-Merson and GMRES methods, Journal of Math-for-Industry, 2011, vol. 3, pp. 73–79.
 - SOR method CPU only

Configuration parameters

- TNL offers configuration parameters management
- configuration description is done in methods configSetup
- one may define configuration parameter
 - type
 - default value
 - required
 - description
 - admissible values

- we have building blocks of PDE solvers
 - grids/meshes
 - sparse matrices
 - solvers (of ODEs and linear systems)
- but it still far from the main PDE solver

PDE solver

• consider the heat equation as model problem

$$\frac{\partial u(\mathbf{x},t)}{\partial t} - \Delta u(\mathbf{x},t) = 0 \quad \text{on } \Omega \times (0,T],$$
(1)

$$u(\mathbf{x},0) = u_{ini}(\mathbf{x}) \text{ on } \Omega,$$
 (2)

$$u(\mathbf{x},t) = g(\mathbf{x},t) \quad \mathrm{on}\partial\Omega \times (0,T].$$
 (3)

• explicit scheme (by method of lines) reads as

$$\frac{\mathrm{d}}{\mathrm{d}t}u_{ij}(t) = \frac{1}{h^2}\left(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{ij}\right) = F_{ij},$$

• semi-implicit scheme reads as

$$\frac{u_{ij}^{k+1} - u_{ij}^{k}}{\tau} - \frac{1}{h^2} \left(u_{i+1,j}^{k+1} + u_{i-1,j}^{k+1} + u_{i,j+1}^{k+1} + u_{i,j-1}^{k+1} - 4u_{ij}^{k+1} \right) = 0,$$

• i.e.

۲

$$\lambda u_{i+1,j}^{k+1} + \lambda u_{i-1,j}^{k+1} + \lambda u_{i,j+1}^{k+1} + \lambda u_{i,j-1}^{k+1} + \left(1 - 4\lambda u_{ij}^{k+1}\right) = u_{ij}^k$$

• which is linear system $\mathbb{A}\mathbf{u}^{k+1} = \mathbf{b}$

PDE solver

- we need to
 - setup mesh
 - setup initial and boundary conditions
 - allocate DOFs
 - setup discrete solver
 - evaluate numerical scheme
 - explicitly \rightarrow explicit update $\frac{d}{dt}u_{ij}(t) = F_{ij} \ \forall ij$
 - (semi-)implicitly ightarrow assembly linear system $\mathbb{A}\mathbf{u}^{k+1} = \mathbf{b}$
 - perform snapshots of the time dependent solution
- TNL aims to simplify these steps by
 - offering some command-line tools
 - implementing a skeleton of PDE solver

Simple implementation of explicit scheme

• the method Problem::getExplicitRHS for explicit scheme may look as

```
void Problem :: getExplicitRHS ( const RealType& time ,
                                const RealType& tau.
                                const MeshType& mesh,
                                DofVectorType& u,
                                DofVectorType& fu )
{
   for ( int i = 0; i < mesh.getDimensions().x(); i++ )
      for( int j = 0; j < mesh.getDimensions().y(); j++ )</pre>
      {
          if ( mesh.isBoundaryCell( i, j ) )
             /****
              * Set boundary conditions
              */
              IndexType idx = mesh.getCellIndex( i, i);
         }
      }
   for( int i = 0; i < mesh.getDimensions().x(); i++ )</pre>
      for( int j = 0; j < mesh.getDimensions().y(); j++ )</pre>
      {
             ! mesh.isBoundaryCell( i, j ) )
          if (
         {
             /****
              * Approximate the differential operator
              */
              IndexType idx = mesh.getCellIndex( i, j );
         }
      }
}
```

More flexible implementation of explicit schemes

It is simple but it works only ...

- on CPU
- for structured grids
- 2D problems

The user would have to write template specialization for

- GPU
- unstructured meshes
- 1D or 3D problems
- other parallel architectures like MIC or MPI

We replace:

- code inside the for loops by
 - differential operators operator(), setMatrixElements
 - functions operator()
- for loops by objects iterating over the grids
 - explicit updater
 - linear system assembler

We distinguish:

- analytical functions
 - ${\, \bullet \,}$ they are defined on \mathbb{R}^n
 - operator()(const Point& v, const Real& time)
- discrete functions (tnlMeshFunction)
 - they are defined on cells, faces, edges or vertices of a numerical mesh
 - values are stored in an array
 - operator()(const MeshEntity& entity, const Real& time)
 - operator[](const Index& entityIndex)

- analytical operators
 - they act on analytical functions
 - operator()(const Function& f, const Point& v, const Real& time)
- discrete operators
 - they act on discrete mesh functions
 - operator()(const Function& f, const MeshEntity& entity, const Real& time)
 - setMatrixElements(const MeshFunction& f, const MeshEntity& entity, const Real& time, Matrix& matrix)
- boundary conditions are operators defined on the boundary mesh entities

```
Real operator()( const EntityType& entity,
                  const MeshFunction& u,
                  const Real& time ) const
{
   auto neighbourEntities = entity.getNeighbourEntities();
   const Mesh\& mesh = entity.getMesh():
   Real& hxSquareInverse = mesh.template getSpaceStepsProducts < -2, 0 > ();
   Real& hySquareInverse = mesh.template getSpaceStepsProducts < 0, -2 > ();
   Index\& east = neighbourEntities.template getEntityIndex < -1, 0 > ();
   Index& west = neighbourEntities.template getEntityIndex < 1, 0 > ();
   Index\& south = neighbourEntities.template getEntityIndex < 0, -1>();
   Index\& north = neighbourEntities.template getEntityIndex < 0. 1>():
   Index& center = entity.getIndex();
   return ( u[ east ] + u[ west ] ) * hxSquareInverse +
( u[ south ] + u[ north ] ) * hySquareInverse
          - 2.0 * u[ center ] * ( hxSquareInverse + hySquareInverse );
```

}

```
void setMatrixElements( const EntityType& entity,
                        const MeshFunction& u,
                        const RealType& time.
                        Matrix& matrix ) const
{
   auto matrixRow = matrix.getRow( index ):
   Real lambdaX = tau*mesh.template getSpaceStepsProducts < -2, 0 > ();
   Real lambdaY = tau*mesh.template getSpaceStepsProducts < 0, -2 > ();
   auto neighbourEntities = entity.getNeighbourEntities();
   Index& east = neighbourEntities.template getEntityIndex < -1, 0 > ();
   Index\& west = neighbourEntities.template getEntityIndex < 1, 0>();
   Index& south = neighbourEntities.template getEntityIndex < 0, -1 > ();
   Index\& north = neighbourEntities.template getEntityIndex < 0, 1>();
   Index& center = entity.getIndex();
   matrixRow.setElement(0, south, -lambdaY);
   matrixRow.setElement( 1, west. -lambdaX );
   matrixRow.setElement(2, center, 2.0 * (lambdaX + lambdaY)):
   matrixRow.setElement(3, east, -lambdaX);
   matrixRow.setElement( 4, north, -lambdaY );
}
```

- the solver may now run even on GPUs
 - hopefully even other parallel architectures like MPI or MIC
- implementing other schemes (3D, unstructured mesh) = implementing another discrete differential operator

- the user still have to write a lot of code
- TNL offers a tool tnl-quickstart
- it generates Makefile and all common files

TNL Quickstart

```
tnl-quickstart
TNL Quickstart — solver generator
```

```
Problem name:Heat Equation
Problem class base name (base name acceptable in C++ code):HeatEquation
Operator name:Laplace
```

```
ls
HeatEquation.cpp HeatEquation-cuda.cu HeatEquation.h
HeatEquationProblem.h HeatEquationProblem_impl.h
HeatEquationRhs.h Laplace.h Laplace_impl.h
Makefile run-HeatEquation
```

```
Compile it by
```

```
make
g++ -l/home/oberhuber/local/include/tnl-0.1 -std=c++11 -DNDEBUG -c -o
HeatEquation.o HeatEquation.cpp
g++ -o HeatEquation HeatEquation.o -L/home/oberhuber/local/lib -ltnl-0.1
```

or

```
make WITH_CUDA=yes
nvcc __I/home/oberhuber/local/include/tnl_0.1_DHAVE_CUDA_DHAVE_NOT_CXX11
_gencode arch=compute_20,code=sm_21__DNDEBUG_c__o HeatEquation_cuda.o
HeatEquation_cuda.cu
...
nvcc__o HeatEquation_HeatEquation_cuda.o_L/home/oberhuber/local/lib_ltnl_0.1
```

It creates executable HeatEquation

TNL Quickstart

You may run it with:

./HeatEquation Some mandatory parameters are missing. They are listed at the end. Usage of: ./HeatEquation

Heat Equation settings:

boundary-conditions-type	string	Choose the boundary conditions type. — Can be: dirichlet , neumann — Default value is: dirichlet
boundary-conditions-constant	real	This sets a value in case of the constant boundary conditions.
— General parameters —		
— real — type	string	Precision of the floating point arithmetic. — Can be: double
device	string	 Default value is: double Device to use for the computations. Care has been and a

		- Can be: nost, cuda
		 Default value is : host
——index—type	string	Indexing type for arrays, vectors, matrices etc.
		- Can be: int

- Default value is: int

... Add the following missing parameters to the command line: ——final—time ... ——snapshot—period ... ——time—discretisation ... ——discrete—solver ...

Or you may use a generated script:

./run-HeatEquation

Disadvantages of C++ templates:

- object interfaces are given implicitly
- it leads to compiler error messages difficult to read
- compilation may take a lot of time

- $\bullet\,$ solving heat equation in 1D, 2D and 3D on time interval [0,1]
- CPU is Intel Xeon CPU E5-2630 at 2.4-3.2 GHz with 20MB cache
- GPU is Tesla K40 2880 CUDA cores at 0.745 GHz

• 1D results

DOFs	Explicit scheme			
	CPU	GPU	Speed-up	
16	0.005s	0.6s	0.0008	
32	0.04s	0.8s	0.05	
64	0.33s	2.5s	0.13	
128	2.62s	10.8s	0.24	
256	20.9s	42.5s	0.5	
512	2m 37.7s	2m 53.0s	0.9	
1024	22m 13.3s	11m 42.0s	1.9	

• 2D results

DOFs	Explicit scheme			
	CPU	Speed-up		
16^{2}	0.2s	0.4s	0.5	
32^{2}	3.8s	1.3s	2.9	
64^2	1m 04.5s	5.8s	11	
128^2	17m 33.0s	27.8s	37.8	
256^{2}	4h 43m 09.0s	2m 36.6s	108	

• 3D results

DOFs	Explicit scheme			
	CPU	GPU	Speed-up	
16^{3}	09s	4.2s	2.1	
32^{3}	5m 33s	18.8s	17.7	
64^3	3h 11m 26s	2m 09.8s	89	

Results

• 1D results

DOFs	CPU -00	CPU -03	Speed-up	GPU	Speed-up
16	0.005s	0.007s	0.7	0.6s	0.001
32	0.04s	0.027s	1.5	0.8s	0.03
64	0.33s	0.12s	2.8	2.5s	0.05
128	2.62s	0.52s	5	10.8s	0.05
256	20.9s	2.95s	7	42.5s	0.07
512	2m 37.7s	21.5s	7.3	2m 53.0s	0.12
1024	22m 13.3s	2m 41.62s	8.25	11m 42.0s	0.23

Results

• 2D results

DOFs	CPU -00	CPU -03	Speed-up	GPU	Speed-up
16^{2}	0.2s	0.07s	2.85	0.4s	0.17
32^2	3.8s	0.59s	6.4	1.3s	0.45
64^2	1m 04.5s	8.16s	7.9	5.8s	1.4
128^2	17m 33.0s	2m 13.7s	7.8	27.8s	4.84
256^{2}	4h 43m 09.0s	36m 08.9s	7.1	2m 36.6s	15.2

• 3D results

DOFs	CPU -00	CPU -03	Speed-up	GPU	Speed-up
16^{3}	9s	0.96s	9.3	4.2s	0.22
32^{3}	5m 33s	30.7s	10.8	18.8s	1.6
64^3	3h 11m 26s	17m 29.7s	10.9	2m 09.8s	8.16

- the reason is unnecessary copying of metadata in each iteration
 - mesh, arrays, mesh functions
- solution is *smart pointers*

- \bullet Comparison TNL vs. pure C implementation on CPU
 - heat equation in 2D

DOFs	TNL	Pure C	Speed-up
32^2	0.1s	0.04s	0.4
64^2	0.19s	0.12s	0.63
128^2	0.41s	0.25s	0.6
256^2	1.34s	1.1s	0.8
512^2	4.9s	3.7s	0.75
1024^2	19s	21.8s	1.14

Future work

Other experimental features:

- unstructured meshes V. Žabka
- mean-curvature flow, complementary finite volumes O. Székely
- GEM on GPU J. Kaňuk
- GMRES via Householder tranformations J. Klinkovský
- parallel fast sweeping method, narrow band method O. Sobotík
- adaptive grids L. Bakajsa
- solver for the Euler equations J. Schafer
- incompressible Navier-Stokes solver V. Klement

Future plans:

- geometric and algebraic multigrid on GPU J. Klinkovský
- support of MPI
- FEM, FVM, LBM, IBM

We are working hard on Xeon Phi support

(courtesy of V. Hanousek)