Template numerical library for modern parallel architectures

Tomáš Oberhuber Jakub Klinkovský Radek Fučík Vítězslav Žabka Aleš Wodecki

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

ICNAAM 2019

Introduction

TNL design Multiphase flow in porous media Conclusion Why GPU? Template Numerical Library

Why GPU?

and the second s	(intel) XEON inside
Nvidia V100	Intel Xeon E5-4660
5120 @ 1.3GHz	16 @ 3.0GHz
15.7/7.8 TFlops	0.4 / 0.2 TFlops
32 GB	1.5 TB
900 GB/s	68 GB/s
300 W	120 W
	Nvidia V100 5120 @ 1.3GHz 15.7/7.8 TFlops 32 GB 900 GB/s 300 W

 $\approx 8,000$ \$

Why GPU? Template Numerical Library

Difficulties in programming GPUs?

Unfortunately,

- the programmer must have good knowledge of the hardware
- porting a code to GPUs often means rewriting the code from scratch
- lack of support in older numerical libraries

Numerical libraries which makes GPUs easily accessible are being developed.

Introduction

TNL design Multiphase flow in porous media Conclusion Why GPU? Template Numerical Library

Template Numerical Library

TNL = Template Numerical Library

- is written in C++ and profits from meta-programming
- provides unified interface to multi-core CPUs and GPUs (via CUDA)
- wants to be user friendly
- www.tnl-project.org
- $\bullet~\approx$ 300k lines of templated code
- MIT license

Arrays and vectors Matrices Numerical meshes Solvers

Arrays

Arrays are basic structures for memory management

- TNL::Array< ElementType, DeviceType, IndexType, Allocator >
- DeviceType says where the array resides
 - TNL::Devices::Host for CPU
 - TNL::Devices::Cuda for GPU
- Allocator performs the memory allocation
 - common CPU and GPU memory allocators
 - page-locked memory allocator
 - CUDA Unified Memory allocator
- I/O operations, elements manipulation ...

1 Array< float, Devices::Cuda, int > a(100); 2 a.evaluate([] __cuda_callable__ (int i) { 3 return i%5; });

Arrays and vectors Matrices Numerical meshes Solvers

Vectors

Vectors add algebraic operations to arrays:

- TNL::Vector< RealType, DeviceType, IndexType, Allocator >
- addition, multiplication, scalar product, l_p norms ...

Arrays and vectors Matrices Numerical meshes Solvers

Parallel reduction

Parallel reduction is an operation taking all array/vector elements as input and returns one value as output:

- array comparison
- scalar product
- l_p norm
- minimal/maximal value
- sum of all elements

```
1 float sum( 0.0 )
2 for( int i = 0; i < size; i++ )
3 sum += a[ i ];
```

Arrays and vectors Matrices Numerical meshes Solvers

Parallel reduction on GPU = 150 lines of code

mant) mant int you ; mant int documents ; mant int documents ; mant int documents ; mass des descentrations et « securites : que partie et auxiliaries et auxiliar int converting a size; mane into reductioning at a decoding ; while converting a t (Ant condition(in () consideration (n); conditionities or a linearization particule constraints (administrational is) [constraints & constraints (in n); constraints or a parties of constraints of particul - Associationities rana unter - solution that ensure that s our constraints, columnities, should alway so (constraints, columnities, Assessment) (assessment) a VP radiation and the second an the subdividual matter bits : ar unincular a subdividual , should user you a construction , subdividual , should user you head Real IX and IX modeline/balantine/c M S normalized as a modeline/or standbalanty (or { consider () Next: Test III Antidisciplicamente III 5 All constitutes a conditioning and the set (, constitutes , constitutes), documente () salahadhalanashi ku an adaladha salahadha , daalhada yoo (amatha , nalamahan) Additional and the second s Contract Magnetic participants, press, press, press, press, 2 and a struct of the methods and a Industriantingue in Annochembert indus may in Annochembert Annochembert in Annochembert Annochembert in May $\label{eq:alphase} \begin{array}{l} \mbox{Allocation} & \mbox{allocation} \\ \mbox{allocation} &$) national Assessment }

Arrays and vectors Matrices Numerical meshes Solvers

Flexible parallel reduction in TNL

Take a look at scalar product:

```
1 float result( 0.0 );
2 for( int i = 0; i < size; i++ )
3 result += a[ i ] * b[ i ];
```

Let us rewrite it using C++ lambda functions as:

```
float a[ size ], b[size ];
1
2
3
    . . .
4
5
   auto fetch = [=] (int i)->float { return a[i]*b[i];};
   auto reduce = [] (float& x, const float& y) { x \rightarrow y;};
6
7
   float result( 0.0 );
8
9
   for ( int i = 0; i < size; i++ )
        reduce( result , fetch( i ) );
10
```

Arrays and vectors Matrices Numerical meshes Solvers

Flexible parallel reduction in TNL

To do the same on GPU in TNL just add __cuda_callable__ to lambdas...

... and call

1 Reduction < Devices :: Cuda >:: 2 reduce(size , reduce , volatileReduce , fetch , zero);

Arrays and vectors Matrices Numerical meshes Solvers

Expression Templates in TNL

Algebraic vector expressions are handled by expression templates:

$$1 \quad x = a + 2 * b + 3 * c;$$

- simple
- works for both CPU and GPU
- efficient
 - one loop on CPU
 - specialized one CUDA kernel for each expression on GPU

Arrays and vectors Matrices Numerical meshes Solvers

Expression Templates & Parallel Reduction in TNL

Example:

```
1 using Vector = Vector < float, Devices::Cuda, int >;
2 Vector a( 100 ), b( 100 ), c( 100 ), d( 100 );
3 ...
4 float scalarProduct = ( a, b + 3 * c );
5 d = a + b * c + sin( d );
6 a = min( b, c );
7 float min_a = min( a );
8 float total_min = min( min( a, b ) );
```

Arrays and vectors Matrices Numerical meshes Solvers

Performance comparison

Performance was tested on:

- GPU Nvidia P100
 - 16 GB HBM2 @ 732 GB/s
 - 3584 CUDA cores, 4.7 TFlops in double precision
- CPU
 - Intel Core i7-5820K, 3.3GHz, 16MB cache

Arrays and vectors Matrices Numerical meshes Solvers

Expression Templates in TNL

Scalar product: r = (x, y).

		CPI	J	GPU			
Size	BLAS	TNL	- nvcc 10.1	cuBLAS	TNL -	nvcc 10.1	
	BW	BW	Speed-up	BW	BW	Speed-up	
100k	17.4	5.0	0.3	49.3	69.9	1.41	
200k	17.4	5.0	0.3	90.1	108.6	1.20	
400k	17.7	5.0	0.3	142.2	159.1	1.11	
800k	13.7	4.8	0.3	207.4	233.4	1.12	
1.6M	12.6	4.8	0.4	313.6	333.3	1.06	
3.2M	12.8	4.6	0.4	381.0	403.7	1.05	
6.4M	12.7	4.6	0.4	417.1	431.8	1.03	

BW = effective memory bandwidth in GB/s

Arrays and vectors Matrices Numerical meshes Solvers

Expression Templates in TNL

Scalar product: r = (x, y).

		CPL	J	GPU with nvcc 10.1			
Size	BLAS	TNL	- gcc 8.3	cuBLAS	TNL -	nvcc 10.1	
	BW	BW	Speed-up	BW	BW	Speed-up	
100k	17.4	13.5	0.8	49.3	69.9	1.41	
200k	17.4	13.7	0.8	90.1	108.6	1.20	
400k	17.7	13.3	0.8	142.2	159.1	1.11	
800k	13.7	12.5	0.9	207.4	233.4	1.12	
1.6M	12.6	9.9	0.8	313.6	333.3	1.06	
3.2M	12.8	8.9	0.7	381.0	403.7	1.05	
6.4M	12.7	9.4	0.7	417.1	431.8	1.03	

BW = effective memory bandwidth in GB/s

Arrays and vectors Matrices Numerical meshes Solvers

Expression Templates in TNL

Vector addition: x += a.

		CPL	J	GPU			
Size	BLAS		TNL	cuBLAS	-	TNL	
	BW	BW	Speed-up	BW	BW	Speed-up	
100k	34.0	42.0	1.2	152.2	174.8	1.14	
200k	35.1	43.0	1.2	196.6	216.1	1.09	
400k	31.7	36.7	1.2	277.6	294.4	1.06	
800k	19.7	19.3	0.97	326.2	333.6	1.02	
1.6M	18.1	17.3	0.95	362.5	374.2	1.03	
3.2M	18.4	17.6	0.95	422.4	436.8	1.03	
6.4M	18.3	17.5	0.95	456.6	469.8	1.02	

BW = effective memory bandwidth in GB/s

Arrays and vectors Matrices Numerical meshes Solvers

Expression Templates in TNL

Vector addition: x += a + b.

		CPL	J	GPU			
Size	BLAS		TNL	cuBLAS	-	TNL	
	BW	BW	Speed-up	BW	BW	Speed-up	
100k	23.6	42.0	1.8	188.3	190.9	1.01	
200k	23.5	41.8	1.8	218.0	230.7	1.05	
400k	20.9	37.4	1.8	243.1	305.9	1.25	
800k	13.7	18.7	1.4	263.8	353.0	1.33	
1.6M	12.2	16.8	1.4	285.9	389.4	1.36	
3.2M	12.3	17.5	1.4	312.9	442.8	1.41	
6.4M	12.2	17.3	1.4	327.3	471.9	1.44	

BW = effective memory bandwidth in GB/s

Arrays and vectors Matrices Numerical meshes Solvers

Expression Templates in TNL

Vector addition: x += a + b + c.

		CPL	J	GPU			
Size	BLAS		TNL	cuBLAS	-	TNL	
	BW	BW	Speed-up	BW	BW	Speed-up	
100k	19.3	41.5	2.2	194.7	236.5	1.21	
200k	19.7	41.7	2.1	228.3	277.6	1.21	
400k	17.3	35.9	2.1	218.3	330.9	1.51	
800k	11.7	19.3	1.6	233.3	370.6	1.58	
1.6M	10.4	17.0	1.6	249.6	403.4	1.61	
3.2M	10.2	17.3	1.7	266.6	444.8	1.66	
6.4M	10.2	17.3	1.7	276.6	471.3	1.70	

BW = effective memory bandwidth in GB/s

Arrays and vectors Matrices Numerical meshes Solvers

Matrix formats

TNL supports the following matrix formats (on both CPU and GPU):

- dense matrix format
- tridiagonal and multidiagonal matrix format
- Ellpack format
- CSR format
- SlicedEllpack format
- ChunkedEllpack format

Oberhuber T., Suzuki A., Vacata J., *New Row-grouped CSR format for storing the sparse matrices on GPU with implementation in CUDA*, Acta Technica, 2011, vol. 56, no. 4, pp. 447-466. Heller M., Oberhuber T., *Improved Row-grouped CSR Format for Storing of Sparse Matrices on GPU*, Proceedings of Algoritmy 2012, 2012, Handlovičová A., Minarechová Z. and Ševčovič D. (ed.), pages 282-290.

Arrays and vectors Matrices Numerical meshes Solvers

Numerical meshes

TNL supports

- structured orthogonal grids 1D, 2D, 3D
 - mesh entities are generated on the fly
- unstructured meshes nD
 - mesh entities are stored in memory

Arrays and vectors Matrices Numerical meshes Solvers

Structured grids

TNL::Meshes::Grid< Dimensions,Real,Device,Index >

Grid provides mapping between coordinates and global indexes.

Arrays and vectors Matrices Numerical meshes Solvers

Unstructured meshes

$$I_{0,1} = \begin{pmatrix} \begin{array}{ccccc} & f_1 & f_2 & f_3 & f_4 & f_5 \\ \hline v_1 & 1 & 1 & & & \\ v_2 & 1 & & 1 & 1 \\ v_3 & & & & 1 & 1 \\ v_4 & & 1 & 1 & 1 & & \\ \end{array} \end{pmatrix} \quad I_{0,2} = \begin{pmatrix} \begin{array}{ccccc} & c_1 & c_2 \\ \hline v_1 & 1 & & \\ v_2 & 1 & 1 & \\ v_3 & & & 1 \\ v_4 & 1 & 1 & & \\ \end{array} \end{pmatrix}$$

Arrays and vectors Matrices Numerical meshes Solvers

Unstructured meshes

TNL::Meshes::Mesh< MeshConfig, Device >

- can have arbitrary dimension
- MeshConfig controls what mesh entities and links between them are stored
- it is done in the compile-time thanks to C++ templates

Based on MeshConfig, the mesh is fine-tuned for specific numerical method in compile-time.

Introduction Arrays and vectors
TNL design Matrices
Multiphase flow in porous media
Conclusion Solvers

Solvers

ODEs solvers

• Euler, Runge-Kutta-Merson

Linear systems solvers

- Krylov subspace methods (CG, BiCGSTab, GMRES, TFQMR)
- highly parallel CWYGMRES method

Klinkovský J., Oberhuber T., Fučík R., *Performance evaluation of distributed MGSR- and CWY- based GMRES variants of MHFEM*, submitted to International Journal of High Performance Computing Applications. Oberhuber T., Suzuki A., Žabka V., *The CUDA implementation of the method of lines for the curvature dependent flows*, Kybernetika, 2011, vol. 47, num. 2, pp. 251–272.

Oberhuber T., Suzuki A., Vacata J., Žabka V., *Image segmentation using CUDA implementations of the Runge-Kutta-Merson and GMRES methods*, Journal of Math-for-Industry, 2011, vol. 3, pp. 73–79.

Formulation MHFEM McWhorter–Sunada problem

Multiphase flow in porous media

We consider the following system of \boldsymbol{n} partial differential equations in a general coefficient form

$$\sum_{j=1}^{n} N_{i,j} \frac{\partial Z_j}{\partial t} + \sum_{j=1}^{n} \mathbf{u}_{i,j} \cdot \nabla Z_j$$
$$+ \nabla \cdot \left[m_i \left(-\sum_{j=1}^{n} D_{i,j} \nabla Z_j + \mathbf{w}_i \right) + \sum_{j=1}^{n} Z_j \mathbf{a}_{i,j} \right] + \sum_{j=1}^{n} r_{i,j} Z_j = f_i$$

for i = 1, ..., n, where the unknown vector function $\vec{Z} = (Z_1, ..., Z_n)^T$ depends on position vector $\vec{x} \in \Omega \subset \mathbb{R}^d$ and time $t \in [0, T]$, d = 1, 2, 3.

Formulation MHFEM McWhorter–Sunada problem

Multiphase flow in porous media

Initial condition:

$$Z_j(\vec{x},0) = Z_j^{ini}(\vec{x}), \quad \forall \vec{x} \in \Omega, \ j = 1, \dots, n,$$

Boundary conditions:

$$Z_j(\vec{x},t) = Z_j^{\mathcal{D}}(\vec{x},t), \quad \forall \vec{x} \in \Gamma_j^{\mathcal{D}} \subset \partial\Omega, \ j = 1, ..., n,$$
$$\vec{v}_i(\vec{x},t) \cdot \vec{n}_{\partial\Omega}(\vec{x}) = v_i^{\mathcal{N}}(\vec{x},t), \quad \forall \vec{x} \in \Gamma_i^{\mathcal{N}} \subset \partial\Omega, \ i = 1, ..., n,$$

where $ec{v}_i$ denotes the conservative velocity term

$$\vec{v}_i = -\sum_{j=1}^n \mathbf{D}_{i,j} \nabla Z_j + \mathbf{w}_i.$$

Formulation MHFEM McWhorter–Sunada problem

Numerical method

- Based on the mixed-hybrid finite element method (MHFEM)
 - one global large sparse linear system for traces of (Z_1, \ldots, Z_n) (on faces) per time step
- Semi-implicit time discretization
- General spatial dimension (1D, 2D, 3D)
- Structured and unstructured meshes

R. Fučík, J.Klinkovský, T. Oberhuber, J. Mikyška, *Multidimensional Mixed–Hybrid Finite Element Method for Compositional Two–Phase Flow in Heterogeneous Porous Media and its Parallel Implementation on GPU*, Computer Physics Communications 238, pp. 165–180, 2019.

Formulation MHFEM McWhorter–Sunada problem

McWhorter-Sunada problem

Benchmark problem – generalization of the McWhorter–Sunada problem

- Two phase flow in porous media
- General dimension (1D, 2D, 3D)
- Radial symmetry
- Point injection in the origin
- Incompressible phases and neglected gravity
- Semi-analytical solution by McWhorter and Sunada (1990) and Fučík et al. (2016)

Formulation MHFEM McWhorter–Sunada problem

McWhorter–Sunada problem

Formulation MHFEM McWhorter–Sunada problem

McWhorter-Sunada problem

Formulation MHFEM McWhorter–Sunada problem

McWhorter-Sunada problem

Numerical simulations were performed on:

- 6-core CPU Intel i7-5820K at 3.3 GHz with 15 MB cache
- GPU Tesla K40 with 2880 CUDA cores at 0.745 GHz

Formulation MHFEM McWhorter–Sunada problem

McWhorter-Sunada problem 2D

	GPU	CPU										
		1 cc	ore	2	cores	ores 4 cores				6 cores		
DOFs	CT	CT	GSp	CT	Eff	GSp	CT	Eff	GSp	CT	Eff	GSp
				0	rthogoı	nal grids						
960	1,5	0,7	0,45	0,4	0,79	0,28	0,3	0,52	0,22	0,3	0,41	0,18
3 7 2 0	11,0	13,2	1,20	7,6	0,87	0,69	4,8	0,68	0,44	4,0	0,55	0,37
14 640	46,3	197,0	4,25	107,5	0,92	2,32	65,7	0,75	1,42	52,6	0,62	1,14
58 080	380,0	4 325,7	11,38	2360,6	0,92	6,21	1 448,1	0,75	3,81	1 195,8	0,60	3,15
231 360	4 449,9	91 166,3	20,49	49 004,3	0,93	11,01	29 182,1	0,78	6,56	24 684,0	0,62	5,55
				Uns	tructur	ed mesh	es					
766	1,5	0,4	0,27	0,3	0,60	0,22	0,2	0,45	0,15	0,2	0,32	0,14
2 912	8,9	6,2	0,70	3,7	0,84	0,42	2,3	0,66	0,26	2,0	0,52	0,23
11 302	51,1	122,0	2,39	67,7	0,90	1,32	40,3	0,76	0,79	32,5	0,63	0,64
44 684	396,1	2 695,6	6,80	1 480,7	0,91	3,74	855,2	0,79	2,16	671,7	0,67	1,70
178 648	4008,3	57 404,2	14,32	32 100,5	0,89	8,01	18 814,1	0,76	4,69	16 414,0	0,58	4,09

Formulation MHFEM McWhorter–Sunada problem

McWhorter–Sunada problem 3D

	GPU		CPU									
		1 cc	ore	2	2 cores			cores		6	б cores	
DOFs	CT	CT	GSp	CT	Eff	GSp	CT	Eff	GSp	CT	Eff	GSp
	Orthogonal grids											
21 600	2,1	15,2	7,30	8,0	0,96	3,82	4,4	0,86	2,13	3,4	0,75	1,62
167 400	30,8	564,3	18,33	319,5	0,88	10,38	186,7	0,76	6,07	150,3	0,63	4,88
1 317 600	828,0	20 569,5	24,84	12 406,1	0,83	14,98	7 092,6	0,73	8,57	5 533,7	0,62	6,68
10 454 400	31 805,6		(n	ot compute	ed on 1	, 2 and 4	cores)			234 066,0		7,36
				Unstr	uctured	l meshes						
5 874	1,4	2,0	1,48	1,2	0,85	0,88	0,7	0,68	0,54	0,6	0,54	0,46
15 546	2,6	8,7	3,30	4,9	0,89	1,85	2,9	0,75	1,10	2,3	0,64	0,86
121 678	23,9	330,9	13,87	184,8	0,90	7,75	107,9	0,77	4,53	93,4	0,59	3,92
973750	566,2	12069,5	21,32	6506,3	0,93	11,49	3771,0	0,80	6,66	3 306,2	0,61	5,84
7 807 218	37 695,3				(not	compute	d on CPU	I)				

Conclusion

Currently we are working on:

- MPI
- nd-arrays (\Rightarrow nd-grids)
- adaptive grids
- documentation

More about TNL ...

TNL is available at

www.tnl-project.org

under MIT license.